Flow Induced Microvascular Network Formation of Therapeutic Relevant Arteriovenous (AV) Loop-Based Constructs in Response to Ionizing Radiation
نویسندگان
چکیده
BACKGROUND The arteriovenous (AV) loop model enables axial vascularization to gain a functional microcirculatory system in tissue engineering constructs in vivo. These constructs might replace surgical flaps for the treatment of complex wounds in the future. Today, free flaps are often exposed to high-dose radiation after defect coverage, according to guideline-oriented treatment plans. Vascular response of AV loop-based constructs has not been evaluated after radiation, although it is of particular importance. It is further unclear whether the interposed venous AV loop graft is crucial for the induction of angiogenesis. MATERIAL AND METHODS We exposed the grafted vein to a single radiation dose of 2 Gy prior to loop construction to alter intrinsic and angio-inductive properties specifically within the graft. Vessel loops were embedded in a fibrin-filled chamber for 15 days and radiation-induced effects on flow-mediated vascularization were assessed by micro-CT and two-dimensional histological analysis. RESULTS Vessel amount was significantly impaired when an irradiated vein graft was used for AV loop construction. However, vessel growth and differentiation were still present. In contrast to vessel density, which was homogeneously diminished in constructs containing irradiated veins, vessel diameter was primarily decreased in the more peripheral regions. CONCLUSIONS Vascular luminal sprouts were significantly diminished in irradiated venous grafts, suggesting that the interposing vein constitutes a vital part of the AV loop model and is essential to initiate flow-mediate angiogenesis. These results add to the current understanding of AV loop-based neovascularization and suggest clinical implications for patients requiring combined AV loop-based tissue transfer and adjuvant radiotherapy.
منابع مشابه
Radiation hormesis and adoptive response induced by low doses of limiting radiation
Ionizing radiation has long been known to produce detrimental biological effects. Although these harmful effects are the results of high doses of exposure, some other maladies such as mutation and cancer seems to be induced at low doses of exposure. In recent decades, however, some pioneer scientists have indicated that ionizing radiation like many other essential agents has toxic effects ...
متن کاملEffect of Mirror Therapy on Arteriovenous Fistula Cannulation-Related Pain Severity in Hemodialysis Patients
Background: Hemodialysis patients experience pains induced by cannulation of an arteriovenous (AV) fistula. The effect of mirror therapy on patients’ pain severity has not been investigated in individuals living with hemodialysis. Aim: The purpose of the present study was to investigate the effect of mirror therapy on AV fistula cannulation-related pain s...
متن کاملIdentification of specific gene expression after exposure to low dose ionizing radiation revealed through integrative analysis of cDNA microarray data and the interactome
Background: Accumulating reports suggest that the biological effects of low- and high- dose ionizing radiation (LDIR and HDIR) are qualitatively different and might cause different effects in human skin. Materials and Methods: To better understand the potential risks of LDIR, we analyzed three cDNA microarray datasets from the Gene Expression Omnibus database. Results: A pathway analysis showed...
متن کاملExpression of phosphorylated histone H2AX in blood lymphocytes of patients undergoing angiographic procedures following exposure to X‐rays
Introduction: Coronary angiography is a Diagnostic-Therapeutic method involving ionizing radiation. This method causes to DNA damage with form double stranded breaks which is followed by the phosphorylation of the histone, H2AX. H2AX is a key factor in the repair process of damaged DNA which will accumulate to damage sites. In human cells, H2AX constitutes about 10% of the H2A ...
متن کاملAnalysis of ionizing radiation-induced DNA damage and repair in three-dimensional human skin model system.
Knowledge of cellular responses in tissue microenvironment is crucial for the accurate prediction of human health risks following chronic or acute exposure to ionizing radiation (IR). With this objective, we investigated the radio responses for the first time in three-dimensional (3D) artificial human skin tissue microenvironment after gamma-rays radiation. IR-induced DNA damage/repair response...
متن کامل